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A THEOREM FOR THE PLASTIC DESIGN OF REGULAR
TWISTLESS GRIDS UNDER CONTINUOUS TRANSVERSE

LOADING

M. GRIGORIAN and S. YAGHMAI

Department of Structural Engineering, Arya-Mehr University of Technology, Tehran, Iran

Abstract-A theorem estimating the collapse load of twistless orthotropic grillages of regular formation with
any combination of boundary support conditions along the sides of a parallelogram and carrying a continuous
distribution of normal nodal loading over the entire surface of the grillage is presented. The validity and the
uniqueness of the proposed theorem are established by the upper and the lower bound theorems of the plastic
methods of structural analysis in conjunction with the techniques of the finite difference calculus. It is shown
by use of this theorem that the previously difficult grillage problems can be solved in a very simple and efficient
manner. As practical examples of the applications of the theorem, solutions to the collapse of regular grids under
uniform transverse pressure with all possible combinations of boundary support conditions have been presented
in tabular form.

NOTATION

x, Y
x,y
m,n
i, j
M" My
M,M
M(x, y), M(x, y)
JJ.=M/M
p(x,y)
P(x,y)
P
R
W(x, y), W(x, y)
lX(y), P(x)
y
E., Ey

E;I, E;1
,1,. = E.-I
Vy =I-E;1
rs;J. = E.+E;I_2

main coordinates (directions)
integers defining coordinates of a joint
integers defining number of bays in X and Y directions respectively
integers defining coordinates of plastic hinge lines
plastic moment capacity of X and Y beams respectively
maximum value of the plastic moment capacity of X and Y beams respectively
ultimate bending moment distributions for X and Y beams respectively
coefficient of orthotropy
external transverse nodal loading
ultimate external transverse nodal loading
maximum value of the ultimate external nodal load intensity
boundary support reaction
ultimate load intensity distributions for X and Y beams respectively
arbitrary continuous functions of y and x respectively'
arbitrary constant defining twist
forward shift operators
backward shift operators
forward difference operator
backward difference operator
second central difference operator

The remainder ofthe symbols are defined as they first appear in the paper

INTRODUCTION

REGULAR gridwords composed of two sets of parallel beams intersecting at constant
angles and supported along the sides of a parallelogram are frequently incorporated in the
construction of engineering structures. In spite of their popular use and the abundance of
technical literature dealing with the elastic and plastic analysis of grillages and similar
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structures, no generalized theorem estimating the ultimate load carrying capacity of such
systems has yet been developed.

The pioneering study in this subject is due to Heyman [1,2] who some twenty years
ago demonstrated general methods leading to upper and lower bounds to the collapse of
transversely loaded grids, concluding that for practical grillages the omission of the
torsional resistance of the members has little or no effect on the final load carrying capacity
of the structure. Lower bound solutions for a number of grillages worked out by Heyman
and by Hodge [3] reveal that the conventional methods of analysis are tedious and often
far too involved for everyday use in design. The step-by-step procedures become even
more difficult with increasing number of members; this is particularly true for grids with
unequal mesh and moments of resistance in the two directions, and more so with different
boundary conditions along the four sides.

Since Heyman many methods of analysis for the plastic design of grillages have been
proposed, but none seem to present suitable formulae for practical design purposes, i.e.
a closed form of generalized solution containing the relevant design variables, namely, the
mesh size, the coefficient of orthotropy and the number of beams in the two directions.
Recently few such solutions for a number of practical grillages with certain combinations
of boundary conditions were produced by the first author [4-6], where use was made of
the techniques of the finite difference calculus to formulate and solve the governing equi
librium equation of regular twistless grids. These formulae, although of some practical
importance are each limited in application to only one type of loading and boundary
condition.

The object of the present work is to introduce a simple generalized theorem for the
collapse load of twistless orthotropic grillages of regular formation arbitrarily supported
along the sides of a parallelogram and subjected to a continuous distribution of normal
nodal forces over the entire surface of the grillage. The theorem eliminates the need for
detailed analysis of the grillages and allows the required results to be written down by
referring to beam collapse formulae only.

In the forthcoming sections after stating the concept of the theorem two otherwise
difficult problems are solved to demonstrate the simplicity of the proposed method. The
examples are followed by a lower-bound proof of the theorem which is then confirmed
by the upper-bound theorem to demonstrate that the theorem also results in valid unique
solutions for the collapse load of the grillage types under consideration. For the purpose
of analysis it has been assumed that the beams of the grillage are interconnected by means
of vertical shear connectors rather than having rigid connections at the joints. Further,
instead of a generalized parallelogram, a rectangular boundary shape has been chosen
for the reference grid as in Fig. 1. However, since no flexural-torsional interaction takes
place between the intersecting sets, these simplifying measures incur neither loss of gener
ality nor errors in the final results.

THEOREM

If for any twistless orthotropic grillage of regular construction with boundaries forming
a parallelogram the variation of the ultimate bending moment capacity of the beams of any
of the two sets is the same as the variation of the representative intensity of the nodal loading
applied to the same beams, then the ultimate load intensity of the grillage will be given by the
sum of the ultimate load intensities of two intersecting beams.
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FIG. 1. Reference regular grid, layout and coordinates.

The representative intensity is best defined as the maximum value of the load dis
tribution function, e.g. the apex value in a triangular distribution of loading over the
entire span of a beam. In other words if the ultimate load intensity distributions for X and
Y beams are represented by

W(x, y) = iX(y)W(X), (1)

and

W(x, y) = P(x)W(y) (2)

respectively, then the variations of the representative intensities of these load distributions
are iX(y)W and P(x)W respectively; and if the plastic moment capacities of the X and Y
beams vary as

M x = iX(y)M(x), (3)

and

My = P(x)M(y) (4)

respectively then the ultimate load carrying capacity of the entire grillage is given by

P(x, y) = W(x, y) + W(x, y)

where, iX(y) ~ 0 for all y and P(x) ~ 0 for all x.

(5)

Illustrative example 1

To illustrate the concept of this theorem consider the collapse load of a rectangular
orthotropic grillage of regular formation carrying a uniform concentration of normal
nodal forces P, with two opposite edges at x = 0 and x = m simply supported, and the
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other two along y = °and y = n fully fixed. Now turning to the reference diagram in
Fig. 1, it may easily be shown that for an independent X beam to collapse under uniform
load W(x, y) = W, i.e. a(y) = 1, the representative collapse intensity is

8M . { }W = 2 6 where 6m = (- 1)m - 1 12,
a(m + m)

and that for an independent Y beam to collapse under uniform load W(x, y) = W, i.e.
{3(x) = 1, the representative collapse intensity is

_ 16M {
W= b 2 6 where6n = (-1)n-l}/2.

(n + n)

(6m and 6n have been introduced to ensure correct answers for beams containing both
even and odd number of loaded points.)

Now by equation (5) the collapse load of the whole grillage is

- {I 2J1-}
P = W+W= 8M a(m2+6

m
)+b(n2+6

n
) ,

a result previously obtained by rigorous analysis [5].

I llustrative example 2

As a second example consider the case of a hydrostatically loaded regular grillage
composed of simply-supported horizontal X beams with plastic moment capacities
linearly varying with location from zero along y = n, (where the pressure is nil) to a maxi
mum value of M at y = 0, (where the pressure attains its largest value P) and identical
cantilevered beams in the Y direction, with fixed edges along y = 0.

Now since a(y) = 0-Yin) and {3(x) = 1 the representative collapse intensities of
independent X and Y beams will be

respectively, and by equation (5), if the beams acted all together the collapse load of the
grillage would be

- {8 6J1-}
P = W+W= M a(m2+6

m
)+b(n2-1) .

This implies that the distribution of the ultimate external loading is given by

P(x, y) = M {a(m28+ 6
m

/ b(n~~ 1)}o- yin);

once again a proven result previously obtained by longhand analysis [7].

PROOF

(a) The lower-bound approach

As far as the requirement of plastic collapse theorems are concerned, a unique solution
for a grid is one which contains statically admissible bending moment fields, which, while
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remaining compatible with the boundary support conditions, and satisfying the prescribed
yield criteria, in tum contains a sufficient number of suitably located maxima or plastic
hinges to transform the structure into a mechanism.

Therefore, looking at the problem from a unique solution point of view and studying
the governing difference equilibrium equation of the twistless grids,

(lja)lSJ xM(x, y) + (1jb)lSJyM(x, y) = - P(x, y), (6)

it may be seen that due to the absence of torsional resistance, equation (6) may be con
sidered to be composed of two parts, each describing the equilibrium state of one set of
beams at collapse, i.e.

(1ja)lSJ x M(x, y) = - P(x, y) +S(x, y),

(1jb)lSJyM(x, y) = - S(x, y)

(7)

(8)

where S(x, y) is the unknown shear force acting between the nodes of the two sets. The
breaking of equation (6) in this manner may be interpreted as describing the structural
action of the grillage as a set of parallel loaded beams, say the beams running in the X
direction, supported on top of the beams of the Y direction. However, if the stated con
ditions of the unique solution are to be satisfied with the individual beams of the grillage
collapsing through the same direction as the applied loading then the permissible upper
limits of the intensities of the loads of the beams of the two sets become apparent.

W(x,y) = P(x,y)-S(x,y),

W(x, y) = S(x, y).

(9)

(10)

Elimination of S(x, y) between equations (9) and (10) suggests the basic form of the
theorem, i.e.

P(x, y) = W(x, y) + W(x, y).

Now treating W(x, y) and W(x, y) as the ultimate intensities of the loads of the beams
of the two sets and referring to the beam equilibrium equations (7) and (8), it may be seen
that these second order difference equations will have solutions describable by continuous,
bounded functions containing two constants of integration and a parameter defining the
magnitude of the loading at collapse, i.e. a sufficient number of constants to satisfy the
boundary force, as well as yielding conditions along the spans meanwhile describing a
state of collapse through the correct beam mechanisms. Table 1 presents such solutions
for constant section, uniformly loaded single span beams, as component parts of the
grillage system, with all possible combinations of the boundary conditions. Therefore, it
is evident that solutions of the forms presented in Table 1, each, by virtue of the require
ments of unique solutions, constitute valid generalized unique solutions for the collapse
of the beams under consideration. However, since the beams of the same set have the same
boundary conditions and, that in accordance with conditions (1-4), similar distributions
of bending moments under similar type of loading can be assigned to each one of them,
then they will all collapse through similar mechanisms with their plastic hinges falling
along one or more straight lines as the case may require.

Now if the beams of the two sets are each assigned a bending moment distribution of
the form described above then their plastic hinge lines will divide the grillage into seg
ments of parallelograms each capable of undergoing rigid body displacements, thus
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forming a suitable plastic hinge pattern to transform the grillage into a mechanism. This
may easily be visualized considering the fact that due to the absence of the twisting re
straints the beams of the collapsing segments will fall along the lines of the constant slopes
of hyperbolic-paraboloids with undisplaced edges along the supports and a high point
at the intersection of two hinge lines or a hinge line and a free boundary; for instance, see
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FIG. 2. Rigid body displacements and rotations at collapse.

TABLE I. UNIQUE SOLUTIONS TO THE COLLAPSE OF SINGLE SPAN BEAMS OF CONSTANT CROSS SECTION UNDER UNIFORM

DISTRIBUTION OF CONCENTRATED NORMAL LOADS

i r i i r r r r r r bm= [( _I)m - IJ/2
~

Moment distribution Load intensity Vertical reaction Vertical reaction
Beam, boundary at collapse at collapse at left support at right support
conditions and

failure mode M(x)/M = W(x)a/M = aRdM = aRR/M =

4(mx-x2)t 8 4(m-l) 4(m-1)
.4 -----0---_-h

m2 +8m m2 +8m m2 +8m m2 +8m

~ -----0------ ~
8(mx-x2

) 16 8(m-1) 8(m-1)

2 m2 +8m m2 +8m m2 +8m m2 +8m

~ x 2 +x 2 2m
3 m2 +m m2 +m

0
m2 +m

j*
t-'-t

~
(m 2 + /)x - (m + j)x 2 2(m+j) (m 2 +/)-(m+j) (m+ j)(2m-I)-(m2 + /)

Ll .....-0---

4 mj(m-j) mj(m-j) mj(m-j) mj(m-j)

* j = nearest integer to the real value ()2 - 1)m.
t m ~ I in all formulae.
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TABLE 2. PLASTIC COLLAPSE PATTERNS FOR UNIFORMLY LOADED REGULAR GRIDS WITH ALL COMBINATIONS OF

BOUNDARY SUPPORT CONDITIONS ALONG THE SIDES OF A PARALLELOGRAM
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Fig. 2. To illustrate this point the hinge line patterns of uniformly loaded grids with all
possible combinations of boundary support conditions are presented in Table 2.

Therefore, since the grillage equilibrium equation is solved in such a manner as to
satisfy the requirements of a lower bound solution meanwhile allowing the grillage to
collapse through suitable mechanisms, then the theorem is true and results in unique
solution for the collapse load of the types of grids and loadings considered in this paper.

(b) The upper-bound approach

As referred to in the preceding section, for a grillage (under the type of loading dis
cussed in this paper) to fail, each collapsing segment being a parallelogram will undergo
rigid body displacements with constant twist without stress defined by

(11)
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where Z(x, y) is the displacement function of a collapsing segment. Upon integration
equation (11) yields, as expected, a hyperbolic-paraboloidal surface of the form

Z(x, y) = yxy. (12)

Referring to Fig. 2 it will be seen that to the rigid body displacement Z(x, y) correspond
rigid body rotations cjJ(x, y) and 8(x, y) about Yand X axes respectively, where

cjJ(x, y) = (1/a)L\xZ(x, y) = yy,

8(x, y) = (1/b)L\ yZ(x, y) = yx.

(13)

(14)

Therefore, studying the work equation for the loaded grid, say for the segment shown in
Fig. 2 i1 gives,

or

j i i j

rM L cjJ(x, y)+ kM L 8(x, y) = L L P(x, y)Z(x, y),
y=! x=! x=1 y=!

j i i j

rMy L y+kMy L x = y L L P(x, y)xy
y=! x=! x=! y=!

(15)

(16)

where (r = 1 or 2) and (k = 1 or 2) are auxiliary terms generalizing the number of hinge
rotations per rigid segment of each beam. Now considering the independent failure of the
constituent beams of the same segment and studying the corresponding work equations
based on the sum of the internal and external works of each beam under the appropriate
collapse intensities it gives for the beams running in the X direction

j j i

rMy L y = y L L W(x,y)xy,
y=! y=! x=!

and for the beams running in the Y direction
i i j

kMy L x = y L L W(x,y)xy.
,<=1 x=!y=!

(17)

(18)

Adding equation (17) to equation (18) to obtain the work equation for the whole segment
it yields

j i i j

rMy L y+kMy L x = y L L {W(x,y)+ W(x,y)}xy.
y=! x=! x=! y=!

(19)

Now comparing the right-hand sides of work equations (16) and (19), it becomes apparent
that

P(x, y) = W(x, y) + W(x, y).

This result obtained for one collapsing segment can easily be extended over the entire
grillage to subsequently prove the statement of the theorem from an upper-bound point
of view.

APPLICATIONS

To demonstrate the applications of the proposed theorem consider the practically
important cases of rectangular regular grids subjected to a uniform concentration of
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normal nodal forces P with arbitrary combination of boundary support conditions as
shown in Table 2. The unique collapse load solutions for the beams of all possible cases
shown in Table 2 are condensed in Table 1. For instance considering the yet untreated
case of such a grillage with three sides fully fixed and the other simply supported, i.e. case
15 from Table 2, the corresponding complete solution immediately follows from the
second and fourth lines of Table 1. Thus, since P = W+ W, then from line 2, Table 1,

_ 16M
W= (n 2 +b

n
)b'

and from line 4, Table 1,

W= 2M(m+j ).
mj(m-j)a

Therefore,

P = M{ 2(m+j) + 16JL }
mj(m - j)a (n2+bn)b

with the corresponding admissible moment fields

M(x) = M{(m2+/)~-(~+j)X2},
mJ(m-J)

and

{
8(ny - l ) }

M(y) = pM n2 + b
n

- 1 .

Now since the moment fields describe the exact distribution of forces at collapse they may
also be used to determine the support reactions along the boundaries; thus

R = M{(m2+/)-(m+j)}
x=o mj(m-j)a '

R = M{(m+j)(2m-l)-(m2+j2)}
x=m mj(m-j)a '

8pM(n-l)
Ry=o = Ry=n = (n 2 +b

n
)b'

which are directly obtainable from Table 1. As a statical check it might be confirmed that
the sum of the reactions along the supports balance the total external load applied to the
internal nodes of the grillage, i.e.

(m-1)(Ry=o+Ry=n)+(n-1)(Rx =o+Rx =m) = (m-1)(n-1)p.

CONCLUDING REMARKS

A new theorem for the plastic design of certain classes of regular gridworks has been
presented. It has been shown by use of this theorem that the previously difficult and ex
tremely tedious grillage problems can now be solved in a very simple and efficient manner.
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The theorem presented in this paper is restricted in application to twistless regular
grids supported along the sides of a parallelogram with members parallel with the boun
daries; further, the loading should be describable by continuous functions of the main
variables. Therefore, as illustrated, the theorem is particularly useful for solving grillage
problems with uniform, hydrostatic or trapezoidally varying loading over the entire
surface of the structure.

As it is known, whenever lower-bound solutions are available they can be used as great
aids for the minimum weight design of the structure. The solutions obtained by the present
theorem result in unique collapse loads for the grillages considered here and may be used
to optimize the total weight of the material used in the construction of these grids. The
distribution functions indicate that the normal reactions along the supports are uniform,
thus allowing for the more economical design of the edge beams.

The theorem may be extended to study the plastic collapse of slabs of torsionally weak
materials as well as orthogonally ribbed plates of negligible torsional resistance, and
possibly to investigate the ultimate load behaviour of certain interconnected truss systems.
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AfiCTpaKT-,llaeTcli TeopHli oueHKH HarpyJKH paJpyweHHII ,nnlI OpToTponHblx pOCTBepKOB, perynlIpHoro
O'lepTaHHlI, 6eJ y'leTa Kpy'leHHII. rpaHH'lHble ycnoBHlI onHpaHHII B,nonb 60KOB napannenorpaMMa CyTb
npOHJBOnbHolt KOM6HHaUHH. PocTaepKH no,naeplKeHHbI ,neltcTBHIO cnnowHoR, HopManbHoR HarpyJKH, no
uenolt nOBepXHocTH. nyTeM npHMeHeHHlI TeopeM Mil BepxHero H HHlKHero npe,nenoB, Ha OCHOBe MeTo,nOB
rrnaCTH'IHOCTH pac'leTa KOHCTpyKUHli, BMecTe c MeTo,nOM KOHe'lHOrO 3neMeHTa, onpe,nenlilOTcll BalKHOCTb H
e,nHHCTBeHHOCTb npe,nnOlKeHHoR TeOpeMbl. YKa3aHO, 'ITO Hcnonb3YlI 3TylO TeopeMy MOlKHO no,nC'lHTaTb,
JapaHee cnOlKHble 3a,na'lH pOCTaepKOB, O'leHb npOCTblM H none3HblM cnoc060M. B KaneCTBe npaKTH'IeCKHX
npHMepoB npHMeHeHHlt JrHX TeopeM, npHBo,nIlTCIl peweHHlI, B Ta6nH'IHOR cjIopMe, Mil paC'leTa HarpY3KH
pa3pyweHHlI perynllpHblX pOCTaepKOB, noon BnHIIHHeM nOCToIIHHOro, nonepe'lHoro ,naBneHHII, ,nnll BCex
BOJMOlKHblX KOM6HH3UHlt rpaHH'lHblX ycnoBHlt.


